HASEGAWA Kenji

Center for Promotion of Higher Education Division of Liberal ArtsAssociate Professor

Career

  • Sep. 2023 - Present
    創価大学理工学部共生創造理工学科
  • Apr. 2017 - Present
    工学院大学教育推進機構基礎・教養科自然科学系
  • Apr. 2011 - Mar. 2017
    工学院大学基礎・教養教育部門一般教育部自然科学系
  • Apr. 2007 - Mar. 2011
    工学院大学工学部共通課程一般教育部自然科学系
  • Apr. 1994 - Mar. 2007
    工学院大学工学部共通課程一般教育部自然科学系
  • Apr. 2004 - Mar. 2005
    Tokyo Woman's Christian University, Department of Mathematics, College of Arts and Sciences
  • Apr. 1995 - Mar. 2003
    The Open University of Japan, Faculty of Liberal Arts
  • Apr. 1990 - Mar. 1994
    工学院大学工学部共通課程一般教育部自然科学系

Educational Background

  • Apr. 1986 - Mar. 1990
    The University of Tokyo, Graduate School, Division of Science
  • Apr. 1984 - Mar. 1986
    The University of Tokyo, Graduate School, Division of Science
  • Apr. 1980 - Mar. 1984
    Tokyo Institute of Technology, Faculty of Science, Department of Mathematics

Degree

  • Mar. 1984
    Bachelor of Science, Tokyo Institute of Technology
  • Mar. 1986
    Master of Science, The University of Tokyo
  • Mar. 1990
    Doctor of Science, The University of Tokyo

Affiliated academic society

  • Jun. 2017 - Present
    Mathematics Education Society of Japan
  • Mar. 2016 - Present
    Japanese Society for Engineering Education
  • Apr. 1992 - Present
    Japan Society for Symbolic and Algebraic Computation
  • May 1990 - Present
    The Japan Society for Industrial and Applied Mathematics
  • May 1987 - Present
    The Mathematical Society of Japan

IDs

  • Identifiers

    研究者番号:70228443
    researchmap会員ID:1000071133
    J-Global ID:200901097376575189

Research Field

  • Natural sciences, Mathematical analysis, Numerical Verification, Semi-linear Laplace equation, Bessel function, Mathematical analysis
  • Humanities & social sciences, Science education, Mathematics Teaching Materials
  • Natural sciences, Basic analysis

Research Keyword

  • Analysis

Research theme

  • 2000 - Present
  • 1990 - Present
    Study on properties solutions to partial differential equations
    partial differential equation,microlocal analysis,
  • 01 Jan. 2020 - Present
    Numerical verification for partial differential equations
    Semi-linear Laplace equation, Bessel function, Sobolev norm

Books and other publications

  • 理工系のための微分積分[改訂版]
    Joint work
    01 Sep. 2023
    9784563012533
  • 理工系のための微分方程式
    Joint work
    02 Sep. 2020
    9784563011659
  • 理工系のための線形代数[改訂版]
    Joint work
    30 Nov. 2018
    9784563012304
  • 理工系のための線形代数
    Joint work
    01 Sep. 2016
    9784563004996
  • 理工系のための微分積分
    Joint work
    01 Apr. 2016
    9784563004989
  • 理工系のための基礎数学
    Joint work
    04 Dec. 2015
    9784563004972
  • 例からはじめる微分方程式
    Joint work
    10 Sep. 2012
    9784434170072
  • 理工基礎 微分積分学[増補版]
    Joint work
    06 Nov. 1998
    4897340128

Paper

Lectures, oral presentations, etc.

  • 工科系大学のオンラインによる数学専門科目の指導法
    27 Aug. 2021
  • 工科系学部の卒論指導としての数学教育
    24 Feb. 2020
  • Fourier解析と複素関数の教材について
    28 Mar. 2019
  • Teaching Materials for Multivariable Calculus and Vector Analysis Made by KETpic
    Kenji Hasegawa
    International Workshop on Mathematical Education for non-Mathematics Students Developing Advanced Mathematical Literacy, 08 Jan. 2018
  • 重積分の定義と公式の理解を促す教材の作成
    14 Sep. 2017
  • KETpicによるベクトル解析の教材の作成
    28 Sep. 2016
  • KETpicによる数学教材の作成
    01 Sep. 2015
  • Boundedness of Pseudodifferential Operators
    Kenji Hasegawa
    International Congress of Mathematicians, 25 Aug. 1998, International Mathematical Union
  • Hölder連続な表象をもつ擬微分作用素のBesov有界性
    01 Oct. 1997
  • Waveletによる擬微分作用素の有界性の証明について
    10 Jun. 1997, [Invited]
  • Hölder連続な表象をもつ擬微分作用素の有界性
    04 Apr. 1997
  • Wavelets and pseudodifferential operators
    Kenji Hasegawa
    International Conference GENERALIZED FUNCTIONS-LINEAR AND NONLINEAR PROBLEMS, 04 Sep. 1996, University of Novi Sad
  • Pseudodifferential operators with Hölder continuous symbols
    Kenji Hasegawa
    Fifth International Colloquium on Differential Equations, 19 Aug. 1994, Plovdiv university
  • Estimates of pseudodifferential operators with finitely differentiable symbols
    Kenji Hasegawa
    International Congress of Mathematicians, 05 Aug. 1994, International Mathematical Union
  • ある滑らかに対角化できないLevi形式をもつ擬凸領域における∂-ノイマン問題に対する劣楕円的評価について
    22 Jan. 1993
  • 偏微分方程式論の現代史
    31 Oct. 1990, [Invited]
  • ある弱擬凸領域における∂-ノイマン問題に対する劣楕円的評価について
    28 Jul. 1990
  • ある弱擬凸領域における∂-ノイマン問題に対する劣楕円的評価について
    19 Jul. 1990
  • Propagation of micro-analyticities of some class of linear differential equations with non-involutive double characteristics
    07 Jul. 1987

Research Themes

  • 1990 - Present
    偏微分方程式の解の性質の研究
  • 1990 - Present
    Study on properties solutions to partial differential equations

Textbooks and teaching materials

  • 01 Apr. 2014
  • Mar. 2015
  • 02 Sep. 2020